
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Ln
z

LO C

THESIS
PETRI NET AND FAULT TREE ANALYSIS:

COMBINING TWO TECHNIQUES FOR A SOFTWARE SAFETY
ANALYSIS ON AN EMBEDDED MILITARY APPLICATION

by

Richard J. McGraw, Jr.

December, 1989

Thesis Advisor: Timothy J. Shimeall

Approved for public release, distribution is unli-nited.

Unc lass if ied
SECURiTY CLASSIFiCATIUN OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
'a SECUR.TY CLASSIFICATION AL'THORTY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved For Public Release;
Distribution Is Unlimited

4 PERFORMING ORGANZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School 37 Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIPCode)

Monterev, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING Bo OFFICE SYMBOL 9. PROCUPFMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONJ (If applicable)

k-, ADDRESS (City, State, and ZIP Cooe) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. INO NO ACCESSION NO.

! ITLE (Include Securit) Classification)

PETRI NET AND FAULT TREE ANALYSIS: COMBINING TWO TECHNIQUES FOR A SOFTWARE SAFETY
ANALYSIS ON AN EMBEDDED MILITARY APPLICATION (1'

'2 PERSONAL AUTHORS)

MCGRA;,', JR. , RICHARD J.

T3a TYPE Oý REPCOT Ii3b TiME COVERED 114 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Yý,sater's Thesis TROclM TO Fecember 1989 1 A

16 S.9PLEVEENTARY NOTATiON
*:s'u views t'xpressed in this thiesis are those of the author and do not reflect the official
n,.icv ,-or puosition of the Department of Defense or the U.S. Government.

COSAT, CODES 18 SUTJECT TERMS (Continue on reverse if necessary and identify by block number)
F 1E'.D G2 COs'P S~j Cr ,:

Petri Nets; Fault Tree

!9 ABSTRACT (Continue on revee if necessary and identify by block number)

So-twar, sa, etv ensures that software programs perform within certain limits without
rvsulting in an unacceptable risk of an accident nccurring. Petri Nets are used to model
concurrent computer systems by helping to understand complex interactions and paths of
execution. Fault Tree analysis is used to determine safety requirements by detecting
software logic errors. They also identify multiple failure sequences in a system that can
lead to safety hazards. Petri Nets and Fault Tree analysis can be combined and uspd in
conjunction with each other. They can take advantage of each others inherent strengths.
This combined methodology can provide an efficient and effect.ive safety analysis technique.

This thesis surveys software safety research and focuses 0'n Tetri Nets and Faul't Tree
analysis. We discuss an :,tended example combining Petri Nets and Fault Tree analvsis.

i.e example is a real-time, military embedded software application. We then indicate
directions for further research.

20 DISTRIBUTiON t IA ,.ABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E1 UNCLASSIFIED/UNLIMTED El SAME AS RPT 0 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE iNDIVUDUAL 22b TELEPHONE (Include Area Code) I 42c OFFICE SYMBOL

Professor Timothv J. Shimeall (408) 646-2509 52SM

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

0' U.s .s oerrn".nt PiIi,, Offlesi lkS-40B-Z4
''.''"-si f led

Approved for public release; distribution is unlimited.

Petri Net and Fault Tree Analysis:

Combining Two Techniques For a Software Safety

Analysis on an Embedded Military Application

by

Richard J. McGraw, Jr.

Lieutenant Commander, United States Navy

B.S.. United States Naval Academy, 1977

Submitted in partial fulfillment

of the requirements for the dejee of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1989

Author: .)\\ 9
Richard J. McGraw, Jr.)

Approved by: I , /K&A• {.(
Timothy/J. Shimeall, Thesis Advisor

MiQh/ael L. Nelson, S ond Reader

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

Software safety ensures that software programs, which control complex

systems, perform within certain limits without resulting in an unacceptable risk

of an accident occurring. Petri Nets are used to model concurrent computer

systems by helping to understand complex interactions and paths of execution.

Fault Tree analysis is used to determine safety requirements by detecting

software logic errors. They also identify multiple failure sequences in a system

that can lead to safety hazards. Petri Nets and Fault Tree analysis can be

combined and used in conjunction with each other. They can take advantage

of each others inherent strengths. This combined methodology can provide

an efficient and effective safety analysis technique.

This thesis surveys software safety research and focuses on Petri Nets

and Fault Tree analysis. We discuss an extended example combining Petri

Nets and Fault Tree analysis. The example is a real-time, military embedded

software application. We then indicate directions for further research.

iii -i

TABLE OF CONTENTS

I. INTRODUCTION 1

A. WHAT IS SOFTWARE SAFETY? 2

B. INTRODUCTION TO SOFTWARE SAFETY ANALYSIS . . 4

II. BACKGROUND TO SOFTWARE SlkFETY TECHNIQUES 9

A. SOFTWARE SAFETY DEFINITIONS 9

B. SOFTWARE FAILURE MODES 9

C. SYSTEM SOFTWkRE APPROACHES 10

D. FAULT TREE ANALYSIS 15

F. SOFT"WARE FAULT TREE ANALYSIS 16

F. PETRI NET ANALYSIS 18

1. Petri Net Theory 22

2. Reachability

G. COMBINING PETRI NETS AND FAULT TREE

AN A LY SIS 23

III. MODELING AND ANALYSIS METHODOLOGY 25

iv

A. INTRODUCTION 25

B. SYSTEM OPERATION 25

C. PROBLEM BEING ANALYZED 28

D. PETRI NET DESCRIPTION 30

E. FAULT TREE ANALYSIS 35

F. SUM M ARY 38

IV. RESULTS AND CONCLUSIONS 41

A . REV IE W 41

B. RECOMMENDATIONS 43

APPENDIX A.. 48

A PPEN D IX B 50

LIST OF REFERENCES..................................... 51

BIBLIOGRAPHY 53

INITIAL DISTRIBUTION LIST 54

V

LIST OF FIGURES

Figure 2-1 Basic Petri Net Structure 19

Figure 2-2 Basic Petri Net Structures After Transitions Firing 21

Figure 3-1 System Block Diagram 27

Figure 3-2 Simplified Block Diagram 29

Figure 3-3 Live Fire Net 31

Figure 3-4 Practice Fire Net 34

Figure 3-5 Missile Fires With Commit 37

Figure 3-6 Missile Fires Without Commit 39

vi

ACKNOWLEDGMENTS

I owe an enormous amount of gratitude and thanks to my advisor,

Professor Timothy J. Shimeall. He has patiently and professionally guided me

along the path to the completion of my thesis. Without his help, expertise,

and encouragement I would not have attained the goals I set for myself. He

was always available and ready to help when I required assistance. I learned

a great deal of information and acquired new techniques to tackle complex

problems. This will certainly help and guide me in the future and for this I

am most grateful.

I am also grateful to my second reader, Major Michael L. Nelson, for

his willingness to evaluate this research for accuracy and readability. I

appreciate his meticulous effort.

I also would like to thank the people at the Naval Weapons Center

China Lake for allowing me to tackle an operational problem. Their

assistance was always timely and despite hectic production schedules you

always responded to our inquires in a professional fashion. I would like to

thank all the A-6E program people. Of particular note, I would like to

acknowledge Wemer Hueber. Scott Smith, and Bob F. Westbrook for their

vii

supporting efforts. Their responsiveness in sending documentation was

significant in aiding my progress.

Finally. I would like to thank my family. My wife Carol was

instrumental in supporting my efforts during my entire stay in Monterey. She

was an excellent proof reader but most of all she offered her loving support

when I needed it the most. She is my best friend and I will be forever

grateful.

To my children Sean, Katie, and Andrew I thank you for being so kind

and understanding. Your sweet dispositions were always a cheerful reminder

and a great motivator that things were really not that bad.

viii

1. INTRODUCTION

Computers are increasingly being used as passive (monitoring) and active
(controlling) components of real-time systems, e.g.. air traffic control,
aerospace, aircraft, industrial plants and hospital patient monitoring
systems. The problems of safety become important when these
applications include systems where the consequences of failure are
serious and may involve grave danger to human life and property.
[Ref. 1]

Increasingly, in the world today, the trend is to implement functionality

through software. Both the military and industry are becoming more and

more dependent on software products. Older weapons platforms are

undergoing system upgrades to significantly increase their service life that

includes additional digital hardware and software. In 1955 only 10 percent

of our weapons systems required computer software. Today the figure is well

over 80 percent [Ref. 21.

The increase in reliance on software has led to safety critical factors that

are significant. Since the techniques for software safety analysis are less

mature than those of hardware safety. Much remains to be learned about

applying safety considerations to the design and cvaluation of computer-

controlled real-time systems. Many major safety critical system purchases are

now incorporating requirements for software safety analysis and verification

in their contracts [Ref. 31.

The mil".. y has responded by publishing several standards for testing

and v-iification of software systems. These include MIL-STD-SNS (.1986),

" IIL-STD-882B (1984), and MIL-STD-1574A (1979). MIL-STD-SNS (USN)

is a Navy standard that covers software safety analysis for nuclear weapons

systems. MIL-STD-882B (DOD) is a Department of Defense standard for

software hazard analysis and software safety verification. Finally

MIL-STD-1574A (USAF) is an Air Force standard that lists the requirements

for software safety analysis and integrated system safety. [Ref. 41

Problems, however, still exist in verifying the safe states of software

controlled systems. The number of states in imbedded software systems

prohibit the realistic testing and verification of these systems. It is impossible

to simulate all the different types of hardware errors, transient faults, and

system interface errors in the design of a complex piece of software.

Therefore. the overall system view is critical. The greatest source of problems

encountered in computer controlled systems is in the lack of syqtem level

methods and viewpoints. [Ref. 4]

A. WVHA' IS SOFTWARE SAFETY?

In order to have a common place to start some preliminary working

definitions need to be presented. Complete safety cannot be achieved since

nothing is completely safe under all conditions. For example, the act of

drinking too much water can cause kidney failure [Ref. 51. Therefore, safety

is a concept that needs to be measured with regards to the situation in which

it is being applied.

Safety can be defined in terms of hazards or undesired states of a

system. When these states are combined with other, perhaps totally unrelated,

environmental factors conditions exist that could lead to a mishap. Risk is

also a part of these factors. It is a function of the probability of the actual

hazardous state occurring. Secondly, once the hazardous state has occurred,

what is the probability of that hazard leading to a mishap? And finally, what

is the perceived severity of the worst potential mishap that could result from

the hazard? [Ref. 4]

Safe!, can then be defined as a measure of the degree of freedom from

risk in any environment. Software safety, therefore, can be considered

freedom from software failures that could cause damage or injury. Software,

however, is not inhcrently unsafe. It cannot, by itself, cause physical damage

or injury. The software acts in conjunction with hardware to do something

that can be physically accomplished. This physical task may then have the

chaice to cause an incident or mishap.

Software and hardware must be treated as a single unit in order to be

analyzed. Software engineering techniques that do not consider the system as

3

a whole, including the interactions between the hardware, software, and human

operators, will have limited usefulness for real-time control software [Ref. 41.

Safety and reliability, although sometimes thought of as the same, are

not. This is especially true with respect to software. Safety is the probability

that a mishap or accident will not occur regardless of whether or not the

intended function is performed. Reliability is defined as the probability that

the system will perform its intended function for a specified period of time

under a set of specified environmental conditions. [Ref. 6]

In general, for a system to be reliable it must work correctly and be

failure free. The system is designed so that the software can react for every

possible software error. Safety is concerned with only those errors that cause

a system hazard. This is not to say that all software errors cause safety

problems and all software that functions according to the specifications is safe

[Ref. 3]. Serious mishaps have occurred while software was operating exactly

as intended and a failure was not present [Ref. 7].

B. INTRODUCTION TO SOFTWARE SAFETY ANALYSIS

Software safety analysis needs to begin when a project is started and

continued throughout the life cycle of the system. A goal of any safety

analysis is to show that the system is safe. The system must be able to

4

operate safely under normal working conditions or the normal intended

conditions. It must also be able to respond safely with the presence of errors

or faults. Software or any software system must not let one simple fault

disrupt its operation. The system must prove that hazards resulting from

sequences of failures are also sufficiently remote. [Ref. 4]

To fully test or analyze all sequences of failures is, for all practical

purposes, impossible. Therefore, the safety analysis procedures must begin to

decompose the problems. An attempt must be made to define what is

hazardous and then judge the likelihood of its occurrence. This approach

lends itself to a backwards type of analysis. The hazards, once grouped, can

then be placed in severity categories with probabilities assigned to each

categorn'. This can better define and focus which hazards would cause the

worst credible mishap, [Ref. 4]

Once the preliminary hazard analysis is completed, detailed software

hazard analysis can begin. The techniques in the initial stages of the analysis

focus on the most damaging failures. The method of analysis starts with a

given set of umn, ceptable failures and then by backward reasoning ensures that

each failure is eliminated or at least minimized in its severity. [Ref. 4]

One method that is used to model a system is timed Petri nets. Petri

nets (Peterson, 1981) allow mathematical modeling of discrete-event systems

in terms of conditions and events and the relationship between them [Ref. 41.

5

Faults and failures can then be incorporated into the Petri net model to

determine their effect on the system [Ref. 1].

Another verification methodology for safety analysis involves the use of

software fault tree analysis (SFT-A) [Ref. 8]. Software fault tree analysis is

a static analysis of a system in order to ascertain software safety

requirements. The technique can also detect software logic errors and

identify multiple failure sequences involving different parts of the system.

The backward approach is once again used starting from the undesired event.

The sequence of actions are stepped through using gates to reach a

contradiction of the undesired event. [Ref. 4]

This thesis looks at the relationship and possible integration of Petri nets

and fault free analysis. Software updates to a weapons system occur quite

frequently over the life cycle of a system. New and more powerful computers

are added to many existing systems to increase their overall system

effectiveness. These factors have contributed to more and more software

being required to meet these needs. Exhaustive testing of software in many

cases is not feasible. Many older systems lack formal and stringent

specifications from the original system. Reverse engineering, therefore, is

performed on the update to ensure that the system works correctly. If the

update was limited in scope, testing can still be accomplished. However, with

6

today's complex and more sophisticated systems designers and implementers

will not have this luxury.

Certainly, for today's safety critical systems, as much testing that can be

done needs to done. However, new methodologies to analyze safety-critical

computer or software controlled systems need to be developed. Combining

Petri net analysis and fault tree applications may be one way to reduce the

number of states or events that must be inspected. Critical states that could

cause personal injury or property destruction must in some way be singled

out. If these critical states are recognized and analyzed appropriate action can

be taken.

Systems in many of today's applications are extremely complicated. In

order to assist in a safety evaluation the system must be fully understood.

Petri nets help in modeling the system in terms of conditions and events and

the relationship between them. Once the system is properly understood fault

tree analysis can be done in areas where possible problems exist. Today,

there are no easy or widely accepted software safety techniques that have been

validated completely [Ref. 4].

This thesis examines one particular real-life software upgrade. It then

evaluates a method to apply Petri net and fault tree analysis to the safety

issues associated with the upgrade. This analysis evaluates critical faults that

may exist in the software. This technique may help in finding and

eliminating safety critical faults in other software.

The actual system under investigation is the proposed upgrade to the

Operational Flight Program (OFP) 240 for the Grumman A-6E aircraft. The

proposed upgrade, named OFP 250, is under development at the Naval

Weapons Center in China Lake, California. Due to time constraints and levels

of expertise one specific weapon system was chosen for evaluation. The

actual safety analysis considered the additional functionality of the master arm

weapons switch. The ability to place the master arm switch in the practice

mode and interface with live weapons was not implemented in the previous

release. OFP 250 changes the function of the master arm switch to let the

aircrew practice and interface with live weapons carried on the aircraft. In

addition, three new computers were added immediately prior to the OFP 240

upgrade. These new computers added additional complexity to the master arm

practice problem.

8

11. BACKGROUND TO SOFFWARE SAFETY TECHNIQUES

A. SOFTWARE SAFETY DEFINITIONS

As software and computer programs have become larger the number of

bugs in these programs have also grown. The ability to test for all cases in

a large software program is, in practice, nearly impossible. At the same time,

our reliance on computers that do critical tasks has grown tremendously. In

order to deal with these inconsistencies, software safety has become a vital

piece of the total system safety puzzle. Software safety analysts have agreed

on certain definitions to help in defining this area of research. These

definitions are set down by the MEEE Standards Committee and will be

followed throughout this thesis [Ref. 9]1. These definitions are listed in

Appendix A.

B. SOFTWARE FAILURE MODES

When designing software some knowledge of thie different types of

failures that can occur should be understood. It has been fairly evident from

research and by example that software does not fail due to wear. Software

failures are actually program errors that exist in the system. Therefore, five

system failure modes can be defined:

9

1. Premature operation of a component (operation not required or the
operation was too early). Error of commission.

2. Failure of a component to operate at a prescribed time (operation left
out of sequence or it was too late). Error of omission.

3. Failure of a component to cease operation at a prescribed time
(calculation takes too long or no termination condition, infinite loop).

4. Failure of a component during operation, i.e., incorrect output.

5. Failure of a component to recognize a hazardous condition that must
require some type of corrective action. [Ref. 10]

These identifiable failure modes should be the basis by which we begin

to analyze key conditions in a software system. [Ref. 11]

C. SYSTEM SOFTWARE APPROACHES

Five approaches can be identified that are currently being used to

enhance safety design. These are hazard elimination; hazard limitation; a

group of hardware and software mechanisms that includes lockouts, lockins,

and interlocks; fail-safe design; and failure minimization. A brief description

of each will follow.

Hazard elimination can be done during the design phase. As the design

continues to be inspected problems will be uncovered. Those design problems

that lead to hazards should be eliminated. However, the problems may be

dependent on hardware or the environment. A computer controlled insulin

pump is an example of how the environment can effect software. The insulin

10

pump is set to monitor blood sugar levels in the body. A certain lower level

of blood sugar corresponds to an increase in insulin. However, there are

environmental factors such as diet or exercise that require different rates for

the pump to add the insulin to the body. The pump must be guaranteed not

to exceed a fixed maximum rate. Therefore, software cannot be the only

way to eliminate a hazard. Software and hardware must work in conjunction

to help solve the problem of hazards. In the above case software would need

to issue commands to ensure the pump acted correctly for the given set of

circumstances and blood sugar levels.

In software terms a hazard is an unsafe state. If the system is ?!lo\cd

to enter an unsafe state this condition can lead to a mishap or safety failure.

The system was able to proceed to the unsafe state by a series of critical

faults that produced a critical error. Therefore, to eliminate the unsafe state it

is necessary to try and eliminate these prior errors and faults.

Some of the techniques that help eliminate hazards include formal

requirements and specification languages, design tools, preliminary hazard

analysis (PHA), fault tree analysis (FTA), and Petri net analysis. [Ref. 11]

Hazard limitation is another piece of the puzzle to help enhance safety

design by reducing the scope of the hazard, thereby limiting the problem.

The idea is to detect the hazardous condition at a low enough energy level to

insure that sufficient time remains to take a recovery action.

11

Monitor systems must be extremely reliable. The program must be able

to continually check and cross check conditions. These monitoring programs

can be implemented in software. However, the software must not only

monitor the situation but also take action. Warnings can be used in

conjunction with the monitoring system. An aural warning for a radar

altimeter set to a desired altitude or an automatic fly-up while on a terrain

following mission are examples of the performance needed by monitoring

software. [Ref. 11]

Lockouts, lockins. and interlocks are based on two principles:

1. isolate a hazard once it has been recognized

2. prevent incompatible events from occurring, from occurring at the
wrong time, or from occurring in the wrong sequence [Ref. 10].

These mechanisms are designed to be accomplished primarily through

hardware. A lockout prevents entering an unsafe state or prevents an event

from actually occurring. A lockin maintains an event or keeps something

from leaving a safe state. Interlocks are the mechanisms provided to avoid

timing failures by ensuring that events happen in the correct order. Many of

these features have been used for operating systems problems. The types of

mechanisms that deal with these problems are semaphores, monitors, and

kernels. Therefore, it should be safe to assume that the experience gained

12

from applying these techniques to operating systems will aid in safety critical

applications. [Ref. 11]

Fail-Safe design tries to ensure that when a failure happens the system

will remain in a safe state. The system will try to remain in or reach a state

in which no damage or injury can result. Fail-Safe design can be categorized

into three types: fail-passive, fail-active, and fail-operational. These fail-

safe designs are described below:

1. Fail-passive design reduces a system to its lowest energy level in the
event of a failure (e.g., disarming a missile after a certain period of
time). A circuit breaker type fuse for the system. It should be used
when no action by the system is a safe action.

2. Fail-active (fail-soft) design reduces the energy level of the other
system in a stepwise fashion in the event of a failure. It should be
used in systems when there is some degree of system activity that
must be maintained to remain safe. Malfunctioning components are
modularized. Each module can be independently terminated. This
avoids a total crash of the system (e.g., water valves for cooling a
nuclear power plant remain open while the system maVes critical re-
calculations on data).

3. Fail-operational design (fault-tolerance) ensures full system
functionality in the event of a failure. It uses redundancy (parallel
or switching) for critical modules that are required to maintain safety
(e.g., an automatic hands off landing system for aircraft). [Ref. 11]

The last method is failure minimization. Some software systems are so

vital that they cannot afford to fail. Therefore, the actual number of times

the system fails must be reduced. One way to meet these goals is to try and

limit failurcs cepecially under heavy load conditions. If the system is going

13

to fail, it is hopefully at a time when system operation can be continued in

some other manner.

Redundancy is used in many cases in fail minimization systems. This

does, however, become expensive. The same software cannot be used as the

backup since it will have the same errors as the front line system. Different,

independent software must be developed and tested to ensure that the backup

works correctly. [Ref. 11]

Research continues to try and help in ways to develop methods that

provide for techniques that aid in software safety. One goal is to produce

safe designs for software, while at the same time, maintain system

performance [Ref. 12]. Another concern is to develop ways to analyze

already existing software. The design must be able to find failure modes or

scenarios that could lead to a specific safety failure. Two techniques that can

assist in the development and analyzing of safe software are fault tree analysis

(FTA) and Petri net analysis. These two techniques will be presented for

modeling of components in a system. The analysis that is done on the system

will show that the information gathered can identify safety area concerns and

be useful in further software safety design.

14

D. FAULT TREE ANALYSIS

Fault tree analysis (FTA) was developed in the early 1960's to analyze

the safety of electro-mechanical systems [Ref. 13]. Evolving from FTA was

software fault tree analysis (SFTA). This extended the concepts into systems

that contained software as subcomponents. FTA starts by defining an

undesired system state or hazard. The system is analyzed in the context of

its environment and operation to find a plausible sequence of events that can

lead to a hazard. The fault tree is essentially a graphic model of various

parallel and sequential combinations of events or system states. The result of

these combinations is the occurrence of the predefined undesired event or

proof that the undesired event cannot occur.

The undesired event could occur due to component failure, human error,

or environmental conditions. Therefore, the fault tree depicts the logical

interrelationship of basic events that lead to an undesired event. [Ref. 141

It is also important to understand what a fault tree is not. It is not a

model of all possible system failures or reasons the system may fail. Each

particular fault tree mnust be tailored to its singular, corresponding, failure

scenario. With the possibility of an almost infinite number of ways leading

to an undesired event the path chosen is the one most credibly decided on by

the analyst.

15

E. SOFTWARE FAULT TREE ANALYSIS

Software fault tree analysis begins in a manner much like hardware fault

tree analysis. The software approach uses a subset of the symbols used in

hardware analysis (Appendix B). This allows software and hardware trees to

be interfaced, linked, and analyzed together. It also allows for greater

freedom in order to include human error and hardware failure during the

analysis. [Ref. 15]

The basic procedur, for 1`7A starts with identifying a hazard that has or

could occur. The hazard is the root of the fault tree. The nodes below are

the necessary preconditions that are needed to have the hazard occur. The tree

builds in a backward way to determine the possible paths that ma' lead to

this particular hazard. These relationships are built by using AND or an OR

Late until each subnode has been analyzed to the lowest possible level. [Ref.

141

After the fault tree has been built to the software interface, higher level

requirements for software safety can be delineated. Unsafe software behavior

may result from any number of conditions. Some examples include the

failing to perform a required function, performing a function not required,

failing to enforce a required sequence, or failing to recognize a hazardous

condition. [Ref. 141

16

Once the system has been modeled by the FTA the hazardous software

behavior can be further modeled by SFTA. This can be applied at the design

or code level. This analysis can lead to identifying software critical items and

components, the detection of software logic errors, the determination of the

initial conditions, and logical places for run time checks in the software.

[Ref. 14]

SFFA is designed to work backwards just as FFA does. The SFTA

attempts to verify that the program as written will not allow, under any

circumstance, an unsafe state to be reached. This type of analysis does not

deal with incorrect states that are not defined to be hazardous. Most of the

real-time systems that are dealt with have two goals in mind. One is

accomplishing the mission or function at hand. The second is to not cause

harm. while in the process of accomplishing the mission. SF-FA unly

addresses the second portion of stated the goals. [Ref. 14]

Proof by contradiction is conveniently used in SFTA since the goal of

the analysis is to prove that the software will not permit some event. If the

analysis can prove a contradiction to the loss event then the event cannot

happen with the software. SFTA forces the analyst to consider what the

software is not supposed to do. This thought process is opposite the normal

approach of what is the system software required to do. The environment is

17

also considered by this approach. Therefore, the most critical assumptions

about the environment can also be considered. [Ref. 14]

F. PETRI NET ANALYSIS

Petri net theory was originally developed by A. W. Holt and others

based on the works of Carl Adam Petri [Ref. 16]. Petri's efforts were

directed to design a new model of information flow in a system. As

computer systems have developed, concurrency of operations have become

more axil more common. Thi. has lead to complex interactions between

concurrently executing components. This makes it nearly impossible to

understand the entire system. [Ref. 17]

Petri nets have been developed to aid in the understanding of concurrent

systems because they have the ability to model parallelism and

synchronization. This new approach realized that relationships between

components of a system could be represented by a graph or net. [Ref. 17]

The analysis by a Petri net can uncover possible problems within the

system and get them corrected. The ultimate goal would be the ability to

analyze a system using a Petri net and then manipulate the net to derive the

properties of the mod,.led system. Questions can be raised that significantly'

enhance the ability to investigate the problem. For example, what states are

18

reachable in a given Petri net? What different sequence of transition firings

are possible? [Ref. 17]

Petri nets are defined in computer science terms as directed graphs whose

nodes are transitions and places. Places are connected to transitions and

transitions are connected to places by directed arcs. Places model conditions

and transitions model the occurrence of an event. Inputs or arcs leading into

a transition represent the precondition of the event. The arcs leading from a

transition define its outputs or postconditions. Figure 2-1 represent', the basic

Petri net structure.

ti

t2

Figure 2-1 Basic Petri Net Structure

19

The circles of Figure 2-1 denote places, the bars are representative of

transitions, the dots represent tokens, and the arrows represent the arcs of the

graph.

Petri net graphs represent the static state or condition of the system under

analysis. In addition, Petri nets can also be used to analyze the dynamic

properties that result from execution. Each place can contain tokens that

model the dynamic properties of the system. Tokens are indicated by black

dots inside of the places as in Figure 2-1. A transition cannot fire if all the

tokens are not present. This then allows for simulation of the model so that

it can be analyzed under different sets of conditions. Tokens are positioned

and moved throughout the net by the firing of transitions. The transitions

must be enabled in order to fire. A transition is enabled when all of the input

places have a token in them. The number of arcs coming out of a transition

represents the number of tokens that will be created when the transition fires.

The transition fires by removing the enabling token from the input places and

depositing the newly created token or tokens into the output places. It should

be noted that there is no dependency between the number of input arcs

required to enable a given transition and that transition's number of output

arcs. Figure 2-1 depicts a basic net with input tokens set to fire.

20

Figure 2-2 shows what has occurred after the transitions in Figure 2-1

have fired. The token is placed into the next place corresponding to the

number of input arcs that lead in.

ti

t2

Figure 2-2 Basic Petri Net Structures After Transitions Firing

A Petri net execution can be viewed as a series of discrete events that

can occur depending on the basic structure of the model being analyzed. This

is an important concept since this leads to the idea that Petri nets can fire in

a nondeterministic manner. If more then one transition is enabled the

possibility exists that any one of those transitions may fire, with the one that

21

fires chosen nondeterministicly. The selection process can be purely random

or driven by forces that are not included in the model.

The nondeterministic actions of Petri nets matches well with events in

real life. This is ideal since real-life events occur in no specific set pattern.

Each occurrence can be a unique set of sequences. It is this fact that makes

Petri nets suitable for concurrent system modeling. However, this does

introduce considerable complexity into the analysis of the net.

A way to reduce the complexity of the Petri net model is to consider

that the firing of transitions is instantaneous or takes no time to fire. Since,

time is a continuous variable, then, the probability of any two or more events

happening simultaneously is zero [Ref. 17]. One other way to remove some

of the nondeterministic behavior is to set up timing maximums and minimums

for the transitions firing times. [Ref. 17]

1. Petri Net Theory

The formal definitions of Petri nets can be found in Peterson (1981).

A Petri net is a five tuple relationship. It consists of a set of places P. a set

of transitions T, an input function I, an output function 0, and an initial

marking a. [Ref. 17]

2. Reachability

If there is a possible transition between one place to another then

we can say that the marking is immediately reachable. In other terms,

22

reachability is the possibility that an initial condition could lead to a given

final condition. Reachability is a directed graphical representation of all the

possible state sequences. The nodes represent states. The arcs between the

nodes represent sets of transitions which sequentially go from one state to

another.

Petri net safety analysis find this advantageous because it uses

reachability to determine if there is a possibility of a mishap state occurring.

If a reachable unsafe state is discovered it can then be analyzed. The analyst

must determine where a critical state is first encountered. With this

information the error can be corrected by changing those conditions that led

to that specific critical high risk state. [Ref. 17]

G. COMBINING PETRI NETS AND FAULT TREE ANALYSIS

Petri nets and fault tree analysis (FTA) have been recently used in

conjunction with one another by Leveson and Stolzy, 1986 [Ref. 1]. They

have developed analysis procedures to help in determining software safety

requirements directly from the system under investigation. They have also

included timing requirements, recoverability, and fault tolerance to help in

determining failure detection and recovery procedures.

To generate the entire reachability graph from Petri nets has been shown

to be exponentially difficult and time consuming. However, by using Petri

23

nets for only key parts of a system the same type of backward analysis that

is used in FTFA can be used in the Petri net. The state information provided

by a fault tree can also be used to reduce the exponential nature of the Petri

net analysis.

Timing can also be added to the Petri net model. This approach can

help in determining the longest time required or worst case scenario required

to complete execution. This information can then be incorporated into the

design currently under development.

The Petri net incorporates faults and failures into the model. The

backward analysis helps uncover problem areas where critical hazards exist.

The analyst can then take the most hazardous part of the system and correct

it by using fault-tolerance and fail-safe mechanisms. If the hazard is too

severe it may need to be eliminated. [Ref. 1]

The above approach attempts to establish important properties of the

system through a framework of examination instead of guesswork. It uses the

advantages of timed Petri nets and the ability to model the flow of execution

with likely fault tree failure scenarios. It may be particularly useful for

software components. Since it is difficult to determine in a complex system

which faults are the most likely to occur and the number of failures is often

very large. [Ref. 1]

24

III. MODELING AND ANALYSIS METHODOLOGY

A. INTRODUCTION

The majority of fleet training with air-to-ground missiles is conducted

with live weapons. The real-time systems employed on different platforms

throughout the Navy have required thorough safety inspections and analysis.

The safety analysis of our system used the modeling power of Petri nets to

trace the flow of events as the system executed. This was critical to

analyzing the system considering that four computers were involved which

were working concurrently. Three of the computers were recent upgrades to

the aircraft. Relatively new interfaces we,, mnodeled and examined to

determine if any new hazardous conditions existed. With this increased

knowledge of the flow of information the unsafe states were identified. FTA

was then used to analyze if the unsafe states could possibly harm the system.

B. SYSTEM OPERATION

The real-time system under analysis is the upgrade of the A-6E

operational flight program (OFP 240). The improvements to the software are

a continuing program controlled and directed by NWC China Lake. The

upgrade, called OFP 250, will accomplish several tasks. It will combine

25

OFP 230, used for older A-6E versions, and OFP 240 which includes the

1553 data bus and new computer hardware. OFP 250 will also add the

capability to perform missile practice attacks with the aircraft master arm

switch in the practice position.

Live missiles will be required to interface with the system. The practice

attack procedures will be identical to those required for a real missile attack.

The practice attack software will also encompass all current A-6E air-to-

ground missiles.

Our analysis of the system was conducted on OFP 240. The evaluation

examined the potential condition of an inadvertent release of a missile with

the master arm set to practice and a live weapon aboard the aircraft.

The A-6E, before the upgrade, used one central computer called the 4PI

or Ballistic Computer Set (BCS) to control the entire system. The new

configuration added three new computers along with the 1553 data bus. The

central or key component of the new system is the Avionics Interface Unit

(AIU). [Ref. 181

In addition to the AIU there are two other computers that need to be

considered to understand some of the concurrent operations. These two

computers are the Missile Switching Unit (MSU) and the Integrated Missile

Panel (IMP). A system block diagram is provided in Figure 3-1 [Ref. 18].

26

-3ý Discretes

MSU IM

ST I. . liA n

Figr-rc 3-:1 System Block Diagram

"The concurrent operations of all the individual system components is

vcry coniple':. We therefore started our analysis by using a timniig diagram

to .AudytvlC seq!jeltiall fl"w of execution for a live air-to-ground missile

The specific missile that we considered was the Harpoon. 1lhupoon was

decided upon for a number of reasons. It was a proven weapon on the A-6E

airframe arid is representative of other air launched missiles. It was also the

area in which most of our expertise and operator knowledge existed.

27

Using the timing diagram and a schematic of the signals for the

input/output of the AIU, a simplified flow chart diagram was made. This

enabled us to better understand some of the concurrent events in the system.

The timing sequence was used to identify the signals from the Harpoon

missile. The AIU diagram was then used to help match and map the signals

that interfaced between the Harpoon and the hardware. Figure 3-2 is the

resulting simplified block diagram of the interface between the Harpoon and

AIU.

The Harpoon weapon was somewhat unique considering that it had been

implemented in older A-6E aircraft by using a 100-kHZ data channel. The

100-kHZ data channel is still used with the 1553 data bus in new or upgraded

versions of the aircraft. The analysis was forced to take this 100-kI-IZ bus

into account in examining safety-critical events. It did not, however, effect

our results. [Ref. 18]

C. PROBLEM BEING ANALYZED

Prior versions of OFP 240 did have some practice missile capabilities.

These capabilities, however, were restricted to the left and right outboard

stations. These stations are unable to be used by any type of weapon, either

live or practice. The circuitry to the outboard stations exists, but there is no

physical hardware that allows the weapon to be attached to the aircraft at

28

MA/LANCL 11N ATTACK STA PRIOR]ITY
IN RA rrGE IN

COf$-I T

[COMMI T OUTPUT COMMI T OUTPUT

TO MLSU TO CU1 7{I WNT TOLAUNCIH

TO HA RPOON

[MISS ILE F:ELEA SE
HI SS! LE EJABLE ,C'JTF'UT

RELEA4SE ENPE1BLE -;AI(: ERROR

T 4.5 SECCf'1D:-;

Figure 3-2 Simplified Block Diagram

these stations. This limitation seriously degraded real-life training scenarios.

The ability of the system to interface between live weapons and the

computer for practice attacks had not been attempted previously. Realistic

training prior to this upgrade could only be conducted by placing the master

arm switch to on. This was not acceptable since this action caused the pilots

release mechanism to be armed and functioning.

In order to minimize the potential for an accident with a live weapon the

master arm switch must be positioned to practice. If this is the case then the

29

system must be allowed to interface with the live missile. The practice

missile attack will, therefore, require the aircrew to perform all the steps

necessary to launch a real missile. The difference being that the missile will

not receive the actual fire pulse. [Ref. 18]

The portion of the problem that we began to focus on was after the

communication link between a live Harpoon and the computer had been

established. Could a missile inadvertently fire with the master arm set to

practicc during the practice attack?

D. PETRI NET DESCRIPTION

The Petri net was developed to gain an understanding of what went on

with each individual signal during the firing sequence. Two nets were built,

one for a live missile fire and one for a practice missile fire. Our goal was

to examine the functionality of the nets to ensure that they behaved in the

same manner as our actual knowledge of the system.

The live fire net is represented in Figure 3-3. The area of main interest

centered around the commit high signal. There are several prior preconditions

that occur before the live fire can be initiated. Three of these signals occur

in both of the nets. These signals are the internal priority, station priority

output high, and the pilot control stick (PCS) input. The dashed lines in

Figure 3-3 represent command abort conditions.

30

Station
Curnlinaru Configurahion Selected

Raised Entered (IMIP/ACU)
(ACU) (ACU)

Station

Commandd

7 (MU)

~1S ~ (A I Uc Dropped

F cu t oi Coman

(S rA

Figure 3-3 Live Huie Net

31

The input of the missile practice mode being false comes from the IMP.

This is a safety check to ensure that the operator has entered the correct type

of attack, either live or practice, in the IMP. This check must correspond to

the position of the master arm switch located on the armament control unit

(ACU) and the entered type of attack in the IMP.

The master arm/landing gear up (MA/LANGU) input is the last and most

important signal that appears in the preconditions for the live fire net. This

signal does not occur in the practice net. It must be set true or high and

remain high throughout the entire firing sequence. If for any reason the

signal goes low the firing sequence will be aborted.

Once the commit high signal from the PCS goes high the AIU begins

the launch sequence. The AIU responds by generating signals to the MSU

an,-' ACU. These two signals are produced concurrently. The signal to -he

MSU begins the interface with the actual Harpoon missile. This branch of the

net does not occur in the practice fire net and is a significant and important

difference between the two.

The other portion of the fire signal is sent from the ARJ to the ACU.

When all preconditions are met. the ACU generates a firing pulse. This pulse

is sent back to the AIU. The AIU then transfers the firing pulse to the

pylons by way of a station missile release output signal and the weapon fires.

32

The practice fire net is presented in Figure 3-4. It is somewhat simpler

considering that it does not rely on the MA/LANGU input. The initial

difference is a new input is introduced from the BCS labelled master arm

practice (MA PRAC). This signal is a new and separate signal to begin the

sequence for a practice attack with live weapons. The MA PRAC input also

has the same safety function implementation as in the IMP design from the

live fire net. The IMP and master arm switch position on the ACU must be

in agreement to work properly.

Once the commit high preconditions have been met the practice fire net

produces one signal versus the two found in the live fire net. The practice

net does not enter the path to the MSU and the subsequent interface between

the MSU and Harpoon. The Harpoon is thereby isolated by the practice fire

procedures and no signals are received by the missile during the critical firing

sequence.

The system continues and as the preconditions of the net are met the

AIU outputs the commit output high to the ACU. It will also output commit

true to the IMP and set the intelnal function commit conditions to true.

Finally, it will monitor the system for the ACU release signal from the BCS

contingent on a good or bad launch. The BCS then provides all the realistic

release parameters and signals to all other system components as if it were a

real launch. This would include most error codes or abort procedures that

33

Practice Configuration Station
Command Entercd Sclected

R ai sod (ACUi) (IMIP/ACU)
(A CU)

Station sent
to AIU

collmilidal
EIIANI[Cd CTommiand
(RCS) 1nicrc•I

Station
Resclect

C7ommrand
Pcadv Commnand

"Dropped
(B'S) • (ACU)

Pv"cýrdc(d
(A i L Ii1/ CS)

Figure 3-4 Pradctice FiHe Net

34

may occur during the release of the weapon. The MA/LANGU procedures

would not be included because of their absence in the practice net.

E. FAULT TREE ANALYSIS

Building on the knowledge obtained from the Petri net modeling the fault

tree analysis could begin. With the Petri net modeled and organized certain

information was discovered to be vital. The knowledge of certain

preconditions and paths in the net helped in assessing the fault tree analysis.

The MA/LANGU was a condition that only existed in the live fire case.

The live fire case also generated two signals after commit, one of which

actually interfaces with the Harpoon.

The practice fire case had a new input from the BCS that was

MA/PRAC. This was critical to the practice event occurring and also caused

the practice fire Petri net to be different than the live fire Petri net. The

practice fire case did not interface with the Harpoon during the firing

sequence.

The overall problem areas in the system can be reduced because of the

knowledge obtained from the Petri nets. In our specific case two scenarios

were studied. The first was the case of a Harpoon firing with the master arm

in practice with the commit occurring normally. The second condition or case

35

occurred if a Harpoon fired with the master arm in practice with no commit

present.

The first case is presented in Figure 3-5. The Harpoon fires with the

master arm in practice. Discounting that a short circuit occurred in the

master arm switch, two paths are explored. First to the left, the fire signals

are sent from the ARU to the pylon. If this is the case, station missile release

signals would have to be high and this could only occur if the master arm is

in the on position. This is a contradiction to the initial loss event and

therefore could not happen.

The track of the MA/LANGU also continues down the tree and comes

to the mastet arm contradiction in each of its paths. The contradiction event

can be reached after the system has sent MA/LANGU to the AIU. If the

MAILANGU signal is accurate, then the master arm must be on. This is not

the case and therefore causes a contradiction.

Following the right hand path of the tree the first condition reached is

that the missile is ready to fire. The ready to fire condition is followed by

the MSL enable signal. Finally, if the signal to the MSU is present, the

precondition for the event is that MA/LANGU must be true. The master arm

is in practice and therefore a contradiction is reached.

The second scenario that was discussed was the occurrence of a missile

firing without a commit present and the master arm in practice. The fault tree

36

EPractice Command
acCaa'uses Actual

Effect

a nd

AlU EXecuteIS Arm Switch WVeapon Ready
Live- Command Signal is Practice for Command

and

ColmidsmArm Sw itch; Data Sent

frorniMSU Command iiaSrn'l i To Weapon

Signali Of Set On Signal Or

Figure 3-5 Missile Fires With Commit

37

for this scenario is represented in Figure 3-6. This tree also goes through

station missile release signals from the ALU to the pylon. However, in order

for this event to happen the commit high signal must be present. If this is

the case then the PCS input must be present from the pilots stick for the

commit to go high. The commit high signal for the initial loss event is not

present. A contradiction is identified and the analysis need proceed no

further.

F. SUMMARY

The analysis from the two scenarios shows that a Harpoon missile could

not be fired inadvertently. There were enough safeguards and design

techniques that ensured that a path to a live fire missile could not be reached

in a practice attack. Two cases of an analysis, however, does not mean that

there are not other problems areas that need to be investigated. Different

missiles may have different signals that are required. However, with the

addition of a separate output from the BCS to the AIU for practice attacks the

design appears to enable safe practice attacks with live Harpoon missiles.

The additional safeguards built into the IMP and ACU switch settings

also help ensure safe operations of the system. These are excellent ways to

go about insuring an inadvertent firing will not occur.

38

No Command in
Practice Causes

Actual Effect

and

AIL Executes Arm Switch Command not Weapon Rcady
Live Command Signal is Practice Entered by Pilot for Command

arld

.'\111 l sel il S ~.jic D~ata Sent

Iloll\lU ollllard ll Sin Set11 Oo Sig pnlO

ani'r d t-td0

FFue - ilsl S. Fire Witllu CAotcnAriti

39

There are cases and scenarios in any system that can not bp identified

or thought of at the time of the design and implementation. Therefore, a

methodology of putting the system through an analysis of some type to reduce

the amount of unsafe states is advantageous. There will be failure scenarios

that need to be continually identified and analyzed by experts to ensure the

system continues to meet safety criteria.

In examining the two specific cases we looked at the inadvertent release

and accidental possibilities of a Harpoon firing. The interlocks in the design

of the system block these events from occurring.

40

IV. RESULTS AND CONCLUSIONS

A. REVIEW

The software safety aiialysis of a concurrent system in a multiple and

distinct CPU environment is a complex one. This problem is certain to

become more .omplex and complicated in the near future. Systems under

consideration, such as the A-12 aircraft, the Advanced Tactical Fighter (ATF),

and some portion of spae defense will have large numbers of interacting

subsystems.

These systems will also control and be responsible for more and more

safety critical functions. The environment in which they operate will also be

more demanding. Design faults and problems must be determined at earlier

points in the software development cycle. Increasing costs and complexities

are just two reasons answers must be found. New methodologies need to be

discovered and perfected to insure that sophisticated hardware and software

does not cause catastrophic incidents and accidents.

This thesis has investigated (proposed) a method for using the power of

Petri nets to model concurrent systems in a multiple CPU environment. The

formation obtained from the modeling of the net will help reduce the

number of cases that need to be analyzed. With the knowledge of the system

41

well understood examining the reduced set of loss events can occur with fault

tree analysis. FTA can then look at each individual loss event and decide on

the feasibility of the event actually occurring.

The sample system we chose is a proposed upgrade to an already

existing operational flight program (OFP 240) for the A-6E Grumman aircraft.

The modeling and safety analysis for this system examined a real-time system

currently in the United States Navy inventory.

The analysis initially used Petri net modeling to begin to break down and

organize complex interactions of the system. Using the methodologies of Petri

nets all aspects of the system functionality were analyzed, including the

different internal interfaces to othcr computers. The analysis then moved into

a constructed block diagram to allow for an examination ot individual

components and a thorough study of component operation, control flow, and

system interfaces.

The model centered around the AIU that is the heart of the new system.

The Petri net modeling technique was used to understand the concurrent

aspects of the AIU with the Harpoon air-to-ground weapon. The Harpoon

was used since it was representative of other weapons that could interface

with the AIU.

Key signals and information routes were determined after the live fire

and practice fire nets were modeled. Differences between the two nets were

42

identified. This gave the analyst a sense of where problems could occur in

the firing sequence.

Once the live and practice fire nets were understood the analysis moved

into FTA. The nets allow the analyst to ascertain the loss event scenarios that

required the most attention. The analysis of these loss events, however, is

time consuming, Automatic tools are being developed to assist in this area

of analysis and need to be developed further.

In our scenario two loss events were analyzed. The analysis begins by

describing the loss event and follows the standard technique of FTA, The

loss event in each case was the root of the tree. The events or nodes below

were the necessary preconditions that were needed for the hazard to occur.

It was shown in each case that there were many places in which a

contradiction was identified. Therefore, it was determined that neither loss

event could occur. There were sufficient safeguards in the design that

prohibited the inadvertent release of a Harpoon in a practice attack.

B. RECOMMENDATIONS

We have demonstrated the feasibility of applying Petri net modeling to

a complex concurrent problem of software safety analysis. We then used this

information to create specific fault tree applications. We did not design a

formal model of these conditions.

43

The methodologies presented are only a preliminary step in creating a

complete set of rules to identify when Petri nets and fault tree analysis can

be used. Leveson and Stolzy, for example, have used a methodology of

simulating system faults within a Petri net model. Their techniques added

fault transitions to the net to cause unintended events or prevented intended

events from occurring [Ref. 1].

Petri nets are excellent for modeling the concurrent actions of a system.

Petri nets are also strongly suited for timing constraints. Systems that proceed

in parallel and need real-time synchionization benefit from Petri net modeling.

FTA can then be used for logical event analysis and specific problem solving

techniques.

Petri nets, however, are difficult and time consuming to analyze. In

order to analyze a complex concurrent system automatic tools are needed.

The reachability graphs must be generated automatically by tools. Any valid

technique to reduce the time and enormous number of paths in a problem will

be essential for the future.

In a complex software system consideration needs to be given to which

techniques will help provide the best possible support for analyzing the

system. Problems will occur during the design of a complex system. Most

of these problems will be detected and corrected. There must, however, be

techniques to uncover hidden problems. The application of Petri nets and

44

fault tree analysis techniques can make a difference in building and designing

better systems.

In a system with a complex set of concurrent operations, Petri net

methods should be used first to drive the fault tree analysis. The concurrent

operations are better suited to be analyzed by Petri net models initially. Once

the complex system is understood problem areas can be better analyzed. FTA

can then be used where experts think major problems are likely to occur.

In a situation or system where events in a fault tree depend on specific

concurrent states being reached, fault tree methods should drive the analysis.

Fault tree analysis is better suited for analyzing specific events. Petri nets

can be then used to model the particular concurrent events in the actual tree.

Deciding on which approach to use is a function of the system under analysis.

One of the major concerns with Petri net methods is the difficulty in

constructing graphs to model the actual system. This is a complex task and

is an area that is currently undergoing major research initiatives.

Integrated tools are one approach that is being investigated to reduce the

time and complexities of Petri net analysis. We recommend that this thrust

should also include tools that support not only Petri nets or fault tree analysis

but both. The information that is obtained from these two techniques is

certainly vital to overall system performance.

45

These tools, once designed, should be integrated. The information

obtained in a Petri net model may also be able to be used by a fault tree

analysis. Questions arise with regards to what portions of the information in

the analysis are common to both techniques. Work in the field of Petri nets

and FTA must be done on the inter-relationships between these two

techniques. Petri nets are versatile enough to enable accurate modeling of

many, concurrent system aspects. They capture the features of system

interfaces and paths of execution and are dynamic assets.

Fault trees are essentially a static analysis. They can, however, detect

software logic errors and multiple failure sequences that may have essential

information that can be shared with Petri net analysis.

Other concurrent modeling techniques also need to be explored. One

example is communicating finite state machines with shared variables, a

technique that allows for direct representation of race conditions. R ce

conditions, where two processes write to the same location simultaneously,

have been shown to contribute to some past mishaps.

We have introduced a technique to combine Petri nets and fault tree

analysis. These combined techniques have the possibility to help in

determining the future of safety analysis. Answers need to be found to ensure

that critical software components can be judged to be safe Software errors,

including simple oversights, must not be the cause of accidents or incidents

46

once the software is introduced for public use. Therefore, we strongly

encourage further research in this area and other areas introduced in this

thesis.

47

APPENDIX A

Failure - The inability of a system or system component to
perform a required function within specified limits. A
software failure occurs when the failure is due to a
software fault.

Fail-Safe System - A system which limits the amount of damage caused
by a fault. No attempt is made to satisfy the
functional specifications except where necessary to
ensure safety.

Hazard - A condition with the potential for causing loss of life
or property.

Loss Event - A hazard at the top level of a fault tree that, if the
event occurred, could ca-use a mishap.

Reliability - The probability that a system, including all hardware
and software subsystems, will perform a required task
or mission for a specified time in a specified
environment.

Safety - The ability of the system to avoid safety failures.

Safety Failure/Mishap- A failure which leads to casualties or serious
consequences. A serious consequence is any undesired
event which the designer considers to be as or more
important than the correct (reliable) operation of the
system.

Safe System - One which prevents unsafe states from causing safety
failures.

Software Error- A human action or inaction (during development or
maintenance) which results in software containing a
fault.

48

Software Fault - A manifestation of an error in software. A fault, if
encountered, may cause a failure.

Software Safety- The ability of the software system to avoid safety
failures caused by software errors.

Unsafe State - A state from which there are circumstances where
further processing will lead to a safety failure or
hazard.

49

APPENDIX B

The rectangle indicates an event to be analyzed further.

The circle indicates a basic fault event or primary
failure of a component. It requires no further
development, and its probability of occurrence is
"derived from the generic rate of the part.

The house is used for events which normally occur in
the system. It represents the continued operation of the
component, and its probability is the reliability of the
Part.

FiThe diamond is used for non-primal events which are

not developed further for lack of information or
insufficient consequence.

The oval is used to indicate a condition. It defines the
st;ite of the system that permits a fault sequence to

'_ occur. It may be normal or result from failures.

("'lie AND gate serves to indicate that all input events

0are required in order to cause the output event.

The OR gate indicates that one or more of the input
events are required to produce the gated events.

50

LIST OF REFERENCES

1. Leveson, N. G., and Stolzy, J. L., "Safety Analysis Using Petri Nets",
IEEE Transactions on Software Engineering, vol. SE-13, no. 3, March
1987.

2. Griggs, J. G., "A Method of Software Safety Analysis", Proceedings
of the Safety Conference (Denver, CO), vol. 1, part 1, System Safety
Soc., Newport Beach, CA, pp. III-D-1 to III-D-18, 1981.

3. Ericson, C. A., "Software and System Safety", Proceedings of the 5th
International System Safety Conference (Denver, CO), vol. 1, part 1,
System Safety Society, Newport Beach, CA, pp. III-B-I to Ill-B-1, 1981.

4. Leveson, N. G., "Software Safety: Why, What, and How", Computing
,ur eys, vol. 18 no. 2, (June 1986), pp. 125-163, 1986.

5. Gloss, D. S., and Wardle, M. G., Introduction to Safety Engineering,
Wiley, NY, 1984.

6. Konakovsky, R., "Safety Evaluation of Computer Hardware and
Software", Proceedings of COMPSAC '78, IEEE, NY, pp. 559-564, 1978.

7. Roland, H. E., and Moriarity, B., System Safety, Engineering and
Management, Wiley, NY, 1983.

8. Leveson. N. G., and Harvey, P. R., "Analyzing Software Safety". IEEE
Transaction Software Engineering, SE-9, 5(September), pp. 569-579,
1983.

9. "Computer Dictionary", IEEE Computer Society Standards Committee,
Martin Weik, ed., IEEE Computer Society, 1979.

10. Hammer. W., Handbook of System and Product Safety, Prentice-Hall,
Inc., 1972.

11. University of California, Irvine, Computer Science Technical Report,
"Applying Existing Safety Design Techniques to Software Safety", by
Jeffery C. Thomas, and Nancy G. Leveson, September, 1981.

51

12. Harvey, Peter Randll, "Fault Tree Analysis of Software", M. S. Thesis,
University of California, Irvine, CA, 1982.

13. Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D. F., Fault
Tree Handbook, NURREG-0492, U. S. Nuclear Regulatory Commission,
January, 1981.

14. Cha, Stephen S., Leveson Nancy G., and Shimeall, Timothy J., "Fault
Tree Analysis Applied to Ada," Proceedings of the Tenth International
Conference on Software Engineering, Singapore, 1988.

15. Software Safety Handbook (Draft), H.Q. AFISC/SESD, Norton Air Force
Base, CA, March, 1984.

16. Petri, C., Kommunikation mit Automaten, Ph.D. dissertation, University
of Bonn, Bonn, West Germany, 1962.

17. Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

1 . MIL-STD-1553B (DOD), Specification Control, Missile C-115241A (AXU),
Program Performance Specification (PPS) for A-250, NWC-2478-250
Revision C, Naval Weapons Center, China Lake, CA, 1 June 1989.

52

BIBLIOGRAPHY

Connolly, Brain, "Software Safety Goal Verification Using Fault Tree
Techniques: A Critically Ill Patient Monitor Example", Proceedings of IEEE
Compass '89, Gaithersburg, MD, pp. 18-29, 19-23 June 1989.

Leveson, N. G., and Stolzy, J. L., "Using Fault Trees to Find Design Errors
in Real Time Software", AIAA 21st Aerospace Science Meeting, Reno, NV,
January 10-13, 1983.

McKinlay, Archibald, "Software Safety Handbook", Proceedings of IEEE
Compass '89, Gaithersburg, MD, pp. 14-19, 19-23 June 1989.

Neumann, Peter G., "The Computer-Related Risk of the Year: Misplaced
Trust in Computer Systems", Proceedings of IEEE Compass '89, Gaithersburg,
MD, pp. 9-13, 19-23 June 1989.

A-6E Operational Flight Program E 250, Mini-PPS, Revision B, Naval
Weapons Center, China Lake, CA, 93555, 23 June 1989.

A-6E 4 PI Developmental Flight Program, E 544.06, Math Flows Draft, Naval
Weapons Center, China Lake, CA, 93555, 17 May 1989.

MIL-STD-1553B (DOD), Specification Indicator, Display/Control ID-2369/A
(IMP). Program Performance Specification (PPS) for 1-250, Naval Weapons
Center, China Lake, CA, 93555, 1 June 1989.

MIL-STD-1679 (DOD). Control Missile C-11524/A (AIU) and Ballistics
Computer Set, CP-1391/ASQ-155A (BCS), Interface Design Specification
(IDS), NWC-2482-250, Revision A, Naval Weapons Center, China Lake. CA,
93555, 1 August 1989.

University of California Irvine, Computer Science Technical Report
NO. 86-14, Building Safe Soft'are, by Nancy G. Leveson, February, 1986.

53

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Timothy J. Shimeall, Code 52Sm 10
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

5. Major Michael L. Nelson, US,,••'Z Code 52Ne 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Mr. Bob F. Westbrook (Code 31) 2
Naval Weapons Center
China Lake, California 93555

7. Mr. Werner Hueber (Code 3104) 3
Naval Weapons Center
China Lake, California 93555

8. LCDR Richard J. McGraw, Jr., USN 8
165 G Ave
Coronado, California 92118

54

